Nondecomposable solutions to group equations and an application to polyhedral combinatorics
نویسندگان
چکیده
This paper is based on the study of the set of nondecomposable integer solutions in a Gomory corner polyhedron, which was recently used in a reformulation method for integer linear programs. In this paper, we present an algorithm for efficiently computing this set. We precompute a database of nondecomposable solutions for cyclic groups up to order 52. As a second application of this database, we introduce an algorithm for computing nontrivial simultaneous lifting coefficients. The lifting coefficients are exact for a discrete relaxation of the integer program that consists of a group relaxation plus bound constraints.
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملApplication of the tan(phi/2)-expansion method for solving some partial differential equations
In this paper, the improved -expansion method is proposed to solve the Kundu–Eckhaus equation and Gerdjikov–Ivanov model. The applied method are analytical methods to obtaining the exact solutions of nonlinear equations. Here, the aforementioned methods are used for constructing the soliton, periodic, rational, singular and solitary wave solutions for solving some equations. We obtained furthe...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملApplication of Homotopy Perturbation Method to Nonlinear Equations Describing Cocurrent and Countercurrent Imbibition in Fractured Porous Media
In oil industry, spontaneous imbibition is an important phenomenon in recovery from fractured reservoirs which can be defined as spontaneous uptake of a wetting fluid into a porous solid. Spontaneous imbibition involves both cocurrent and countercurrent flows. When a matrix block is partially covered by water, oil recovery is dominated by cocurrent imbibition i.e. the production of non wettin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- 4OR
دوره 4 شماره
صفحات -
تاریخ انتشار 2006